Skip to Content

Tag Archive: plasma surface treatment equipment

  1. 8 Facts About Plasma Surface Treatment

    Leave a Comment

    3DT has manufactured corona and plasma treatment systems for over 30 years. Our solutions enhance the surface characteristics in materials and components, including adhesion, bond strength, cell culture growth, cleanliness, and wettability. We offer a broad range of standard and custom options in our PlasmaDyne Pro series for use in customer facilities that accommodate a wide number of applications and substrates. 3DT’s systems can be used for plasma treatment for plastics, glass, foam, metal, and more.

    What You Should Know About Plasma Treated Surfaces  eight interesting facts about plasma treatment that address why they are used, how they are used, and more.

    #1 Plasma: The 4th state of matter.

    lightning is plasma

    Everyone is familiar with the three states of matter (solid, liquid, gas), but the fourth state is one that is less well known- plasma energy. Yet, everyone is familiar with lightning seen on a summer evening. This powerful energy is plasma! Essentially, plasma is an ionized gas consisting of approximately equal numbers of positively and negatively charged particles. There are two general forms of plasma: high-temperature plasmas that are found in stars and in fusion reactors; and low-temperature versions used in surface treatment, neon and fluorescent lighting, plasma TVs and semiconductor manufacturing.

    #2 Plasma surface treatment is powerful enough to break hydrogen bonds.

    Plasma surface treatment is created by combining reactive gas molecules and an electric field. This method uses one or more high voltage electrodes which charge the surrounding blown gas molecules, resulting in a highly ionized field that is forced onto the targeted surface. This highly ionized air stream creates a thermal property that reacts with the substrate and breaks the existing hydrogen bonds by introducing oxygen which recreates the chemical properties of the surface. The plasma process causes a molecular reaction on the substrate. It also creates finely etched and micro-cleaned surfaces resulting in better wettability, stronger bonding traits. See a video of PlasmaDyne Pro treating bottles in a trial here. 

    #3 Plasma surface treatment improves adhesion.

    Plasma surface treatment modifies the surface of a material on a molecular level, enabling it to bond more readily with adhesives, ink, paint, and other media. It is effective on a variety of materials; even difficult-to-bond materials can achieve better adhesion without experiencing surface damage.

    #4 Plasma treatment improves adhesion on a wide variety of materials.

    Bonding problems are pervasive throughout manufacturing, especially the plastics industry. Manufacturing and decoration often include joining plastic-to-plastic, plastic-to-metal, plastic-to-composite and more. But, plastics and many other materials possess low surface energy or “wettability” and therefore, require plasma pretreatment.

    Plasma treatment is a non-invasive, non-heat-based process that can be used on virtually any material. It encourages molecular bonding on surfaces, micro-cleans contaminants, and causes fine etching. Plasma treatment facilitates the bonding of adhesive,  ink, paint, and other media to a range of substrates. These materials benefit from plasma treatment:

    • Plastics
    • Rubber and Elastomers
    • Engineering Polymers
    • Composites
    • Glass
    • Metals and alloys
    • Ceramics

    #5 Many industries rely on plasma surface treatment for their products.

    Plasma surface treatment is used to enhance the wettability, adhesion, and cleanliness of materials within numerous industries, including:

    • Aerospace: The aerospace industry uses plasma surface treatment on critical surfaces to enhance adhesive bonding.
    • Automotive and Transport: The automotive and transportation industries utilize plasma treatment to improve adhesive bonding between components and enhance paint and coating adhesion to a variety of substrates.
    • Consumer Goods: Plasma treatments enhance the functional and aesthetic quality of various consumer goods.
    • Electronics: Plasma treatments protect sensitive components within potting. Plasma treatment is nearly potential-free allowing plastics with embedded circuitry to be safely surface treated.
    • Medical and Biotech: Plasma treatment is used for raising surface energy and micro-cleaning surfaces to ensure optimal bonding between components and devices.
    • Packaging: Packaging materials, such as plastic films, cardboard, and plastics, are often plasma treated to promote adhesive and ink application during printing and labeling operations.
    • Printing: Printing operations integrate plasma treatments to enhance surface wettability to ensure precise, vivid, and long-lasting ink adhesion.

    #6 Plasma surface treatment is versatile.

    Due to its exceptional versatility, plasma treatment has become critical for a wide range of applications, such as:

    • Painting, coating, and printing for plastic products
    • Enhancing coating adhesion for polymer extrusions
    • Printing, painting, and coating rubber profiles
    • Cleaning the surface of aluminum and other metals
    • Improving adhesion of glue on cardboard products
    • Treating silicone foam to enhance adhesive application
    • Improving adhesion of paint and ink to composite materials

    #7 The advantages of plasma treatment include speed, cost-efficiency, eco-friendliness, and more.

    Plasma treatment offers a number of advantages over other treatment options. For example:

    • It is potential-free: Atmospheric plasma is potential-free, so the treatment process can be used in conductive, semi-conductive, and non-conductive applications.
    • It is effective for surface cleaning: Plasma can be used for micro-cleaning operations, which removes surface impurities and contaminants.
    • It is environmentally friendly: Plasma cleans and enhances material surfaces without the use of harmful chemicals or ozone emission.
    • It is cost-efficient: Plasma treatment reduces process time by improving bonding, increasing surface cleanliness and wettability. You spend less time processing the substrate and use less ink, paint, glue, or coating due to optimal adhesion. Less waste and scrap are created, plus our plasma systems have low energy costs.

    #8 3DT is your go-to source for all plasma surface treatment products!Plasma Dyne Pro Cut Out 4 MB 4455AP

    3DT is a leading provider of plasma surface treatment solutions. Equipped with more than three decades of experience, our experts will thoroughly discuss your application with you and help to select one of our standard PlasmaDye Pro systems or a custom-engineered PlasmaDyne Pro based on the requirements of your application. PlasmaDyne Pro can be customized for nearly any 3D or flat surface. We also offer product handling and automation.

    Learn More About Plasma Surface Treatment From 3DT

    Plasma surface treatment improves the surface properties of materials, which is why they are used in many industries and applications. To learn more ask the experts at 3DT. As an experienced manufacturer of plasma surface treatment systems, we can address any questions you may have about the process and our systems. If you need a plasma system for your facility, we’ve got you covered.

    To learn more about our products and how they can benefit your components and materials, check out our PlasmaDyne Pro or contact us today.


  2. What is the process for purchasing a surface treatment system from 3DT?

    Leave a Comment
    The Purchasing Process Involves Strong Communication, Teamwork and Creativity

    By Gary Kohlnhofer & Nick Anton

    3DT strives to find a highly effective and dependable solution for every client’s unique surface treatment application and adhesion challenge. Whether that solution lies in our line of standard products or engineered through our application development process, we utilize a collaborative approach to produce a successful, “real world”, proven solution.

    Typically, the process for purchasing a system follow the steps below. Standard systems ensue a shorter process and, if the item is in stock, it can be shipped within days. Custom systems follow the same initial and final steps but incorporate additional steps collaborating with customers and our team to develop the correct solution. Additionally, it’s not unusual for customers to visit 3DT at some point along the process. Please see the flow chart below.

    Sales team discusses an application, 3DT LLC.

    Purchasing a Standard System-

    1. Reaching out- Typically, a customer calls, emails, or sends an RFQ sharing a need for better adhesion on their component.
    2. The application is explored– Our sales engineers discuss the application with them gathering more details on the type of material, process parameters, cycle time, material handling considerations, etc. Photos and samples are often sent to 3DT to provide more information about the component.
    3. Samples are surface treated- Samples are precisely tested and documented with the appropriate surface treatment system utilizing the customer’s process specifications. A detailed lab report and photos are provided by our engineering assistants assuring the customer’s surface treatment needs are met. This step is not always necessary.
    4. System selection- If 3DT’s experienced sales team determine that a standard system rather than a custom system will provide a strong solution, that information is explained along with sharing tech data sheets, videos, drawings and/or photos of the selected system. Please see below where additional steps to purchasing a custom system are discussed.
    5. Quotation- Once the customer and 3DT agree upon a practical solution, a detailed quote is provided including a description of the equipment, price, payment terms, and estimated delivery time.
    6. Customer purchase order – Approval of the final quote is certified with a purchase order.
    7. Production- Once a purchase order is received, the equipment is put in the production schedule and built in-house in Germantown, Wisconsin by our highly experienced team. Alternatively, many standard systems are kept in stock at 3DT for quick delivery.
    8. QC Testing- The system is tested by Quality Control to assure that all aspects of the equipment are functioning to our design specifications.
    9. Ship it- The system is then carefully packed, crated and shipped along with a comprehensive instruction manual.
    10. After sales- The sale does not end here. 3DT stocks all replacement parts for their systems. Our service team is readily available to assist if needed. Your salesman will be in touch to assure a smooth transition into successful production. Training and installation can also be provided.


    Purchasing a Custom System Custom systems follow the same steps above but incorporate these additional steps:

    3. Custom system-  Conversations continue with the customer to determine process parameters, production details and more. After further discussion, sample trials, and analysis the team may determine a customized system best suits the application.

    4b. Application development- With adhesion results on the sample proven out, an Application Meeting is held with 3DT’s sales engineer and our mechanical and electrical engineers to develop a concept and surface treatment method. Once the concept is designed on paper a conference call is held with the customer and 3DT’s team to discuss the design. Changes, adjustments and more communication occurs until a successful solution is found and the customer is fully comfortable with the concept.

    6b. Approval drawing- A final concept drawing is developed then signed off by the customer before production begins.

    Flow Chart- Purchasing Process

  3. Reviewing Surface Treatments: Decorating, Printing and Bonding on Plastic IS Possible

    Leave a Comment
    Plastics Decorating Magazine's Enews
    This plastic bottle has been plasma-treated in the center only. Note how the ink bonds to the surface where treated but beads up where the bottle was not treated.

    From Plastics Decorating Magazine’s Enews July 2020

    By Gary Kohlnhofer, Senior Sales Engineer, 3DT LLC

    Polymers have many useful properties, making them the material of choice. Polypropylene and polyethylene are prime examples. However, polymers typically have insufficient surface energy and poor wettability for most printing and bonding applications. Fortunately, corona and plasma surface treatment modify the surface of polymer substrates and raise their surface energy for printing, coating, painting and adhesive applications. As a result, the usefulness of polymers greatly increases for decorating and bonding applications.

    Let’s take a look at each of these methods of surface treatment, their applications and benefits:

    What is corona treatment?

    Corona treatment makes use of a generator and high voltage transformer to create a high voltage/high frequency corona discharge applied through an electrode with small airgap onto the surface to be treated. The result is a cloud of ionized air – or corona discharge – which then is used for the surface treatment of plastics and other materials.

    A substance placed under the corona discharge is impacted by electrons with energy two to three times that necessary to break the molecular bonds on the surface. The resulting free radicals rapidly react with the oxidation of products in the corona discharge or with adjoining free radicals on the same or different chain, resulting in a cross-link. Oxidation of the surface increases the surface tension or surface energy, allowing for better wetting by liquids and promoting adhesion.

    In the photo to the right, MultiDyne’s discharge treats ampules before printing.

    How is corona used in relation to plastics decorating?

    Corona treatment often is used inline on web-based printing machines, such as for treating label materials. Films such as polypropylene and polyethylene, for example, are treated inline prior to the digital printing decks to increase the surface tension and improve wettability and adhesion of digital inks. With these inline corona treating systems, the web is threaded over a treater roller and high voltage/high frequency power is applied to the electrode resulting in corona discharge through a small airgap. Corona treating systems also can be used on a high-speed cup decorating line, treating the cup on a mandrel prior to the printing decks.

    What types of applications or surfaces is corona treatment better suited for and why?

    Corona discharge effectively improves the surface tension on numerous materials that show poor or no adhesion properties to media, such as printing inks and adhesives.

    Reviewing Surface Treatments: Decorating, Printing and Bonding on Plastic IS Possible
    This MultiDyne system with two treating heads and a conveyor is designed for improving adhesion on small parts.





    Corona treating systems lend themselves to many applications, such as inline printing presses, but discreet parts can be treated as well with custom conveyor-based systems. A conveyor-based system using rotating electrodes treats different shapes and sizes without set up changes.

    These systems are very user-friendly and provide for uniform, repeatable surface treatment and high production rates. Individual parts also can be treated in fixtures with corona treatment delivered by custom electrodes and generator configurations.

    What are the benefits and challenges of this particular treatment?

    The benefits of the corona treatment process include the ability to print on substrates that otherwise would not be possible. Users also benefit from better print quality and faster printing line speeds, resulting in higher production and output.

    What is plasma treatment?

    Plasma surface treatment (also called in-air and atmospheric plasma) improves the wetting properties of polymeric materials, rubber, metals, glass, ceramics, paperboard and more. The molecules of these difficult-to-bond materials are modified by the plasma process to obtain better adhesion without causing harm to the surface.

    3DT's PlasmaDyne plasma treatment system. Rotating heads provides full coverage of a metalized plastic part.
    PlasmaDyne PRO rotating head treats a metallized plastic part to improve adhesion of ink/paint.

    Atmospheric plasma is created by combining reactive gas molecules and an electric field. This technology uses one or more high voltage electrodes which charge the surrounding blown gas molecules, resulting in a highly ionized field that is forced onto a targeted surface. This highly ionized air stream creates a thermal property that reacts with the substrate and breaks the existing hydrogen bonds by introducing oxygen which recreates the chemical properties of the surface. The atmospheric plasma process causes an intensified reaction with the material, resulting in better wettability, stronger bonding traits and micro-cleaned surfaces.

    How is it typically applied/integrated into the workflow?

    Plasma treating systems often are placed just prior to printing on inline printing production lines. The plasma treating head is mounted above a profile allowing the material to pass under the treating head and then the printing head improving the adhesion of the digital inks. Alternately, individual parts can be placed in a fixture then inserted into a plasma treating system set up to index the treating head back and forth over the parts, treating the top surface of the parts. Once treated, this fixture can be inserted into the digital printer for improved printability thanks to plasma treatment.

    PlasmaDyne PRO rotating head treats a metallized plastic part to improve adhesion of ink/paint.
    Here PlasmaDyne PRO is fitted to a robotic arm to quickly plasma treat defined areas of parts.


    What are the benefits and challenges of this particular treatment?

    Because atmospheric plasma is nearly potential-free, one important advantage is that plasma treatment can be incorporated into conductive, semi-conductive and non-conductive applications.

    Plasma is effective for cleaning surfaces by removing impurities, contaminants, residue and organic compounds. This process, called micro cleaning or etching, provides another important aspect in improving adhesion. What’s more, surface activation by plasma treatment is exceedingly fast, effective, economical and environmentally safe.

    What are 3DT’s surface treatment options for printing and decorating on plastics?

    3DT LLC provides a complete line of corona and plasma surface treating systems designed to overcome many adhesion challenges.  We offer standard and custom-built systems and application development.

    FlexiDyne Pro corona treatment system for labware and plastic parts.

    Our 3DT FlexiDyne PRO system is a conveyor-based corona treating system that utilizes rotating electrodes to provide a wider treat area and uniform, repeatable treatment with high production rates.

    In order to treat individual parts and profiles, we can provide a corona treating system using our 3DT PolyDyne generator and high voltage transformer technology and electrode system designed specifically for the part/profile to be treated.  Especially useful is our 3DT UltraDyne generator package designed for high speed cup and tube printing and decorating applications. UltraDyne provides consistent, strong high-frequency treating where other systems can’t.

    UltraDyne cup treater

    For surface treatment utilizing plasma technology, we offer our 3DT MultiDyne low frequency plasma system as well as our recently updated 3DT PlasmaDyne PRO system.  The PlasmaDyne PRO system with adjustable power output is especially suited for today’s system requirements to be easily adjusted for process changes.

    Custom PlasmaDyne PRO system

    Custom PlasmaDyne PRO system with 8 treating heads and individual adjustments.








    Gary Kohlnhofer has 38 years of experience in the plastics industry, 15 of those as Senior Sales Engineer with 3DT LLC. 3DT LLC is a manufacturer of surface treatment equipment, offering standard and custom-built systems and application development. Established in 1991, 3DT has been developing solutions for adhesion and bonding challenges for enumerable applications in all industry sectors. 3DT manufactures a complete line of corona and plasma systems incorporating robust design, proven technology and exceptional customer service with every standard and custom-engineered system. 3DT’s systems are designed and manufactured in Germantown, Wisconsin. For more information, visit

  4. 3DT’s Updated Plasma System: Smart Technology, Adjustable Power Levels

    Leave a Comment

    Read About the Advances and Advantages of 3DT’s New Plasma System

    3DT’s hardworking, classic plasma treatment system for 3-D parts, PlasmaDyne, has been thoroughly updated as a part of the company’s effort toward continual technological improvement and meeting the needs of the industry. Updates include the newest in electrical engineering, components and design. Renamed PlasmaDyne Pro, the upgraded system features an optimized, sophisticated control panel, adjustable plasma treatment levels, energy efficiency, modular replacement parts, it’s compact and economical.

    New Features and Advantages

    As with 3DT’s previous plasma system, PlasmaDyne is known for providing highly effective surface treatment, flexibility in adapting to varied applications, thoughtful engineering and durability. The new PlasmaDyne Pro has several important upgrades but of most importance PlasmaDyne Pro is the only system in the market to offer adjustable treatment and power levels. 3DT’s Updated Plasma System: Smart Technology, Adjustable Power Levels

    The new PlasmaDyne Pro system includes these new features and benefits:

    • Adjustable power level up to 600W to achieve desired treatment levels; turn up the power to raise surface energy on resistant substrates or lower the power for delicate substrates. Treatment levels can be programmed for each individual treating head.
    • Color touch display for monitoring all system parameters, including troubleshooting and fault log.
    • Modular power factor supply for treating heads allows for quick, easy changes to keep production running.
    • Active power correction for highest efficiency and lowest operating cost.
    • Compact and economical: PlasmaDyne Pro systems with 3 or more treating heads are now smaller than systems previously produced and more economical as a result.

    Overcoming Adhesion Challenges

    PlasmaDyne Pro utilizes atmospheric plasma technology to effectively and uniformly treat surfaces for the improved adhesion of glue, paint, ink, flocking, coatings, and laminates. Plasma technology raises surface energy by modifying the molecular structure of many difficult-to-bond materials without causing harm to the substrate. PlasmaDyne Pro’s plasma process improves the surface tension on polymers, rubber, metal, glass, ceramic, paperboard and composites. It is adaptable to countless applications.

    The 3DT PlasmaDyne Pro completes two functions in a single step: it cleans organic contaminants from the surface and alters the molecular structure of the substrate, thereby raising the surface energy and producing a stronger bond between the substrate and media.

    As mentioned, PlasmaDyne Pro micro cleans surfaces by removing impurities, contaminants, residue, organic compounds and some hydrocarbons. This process provides another important aspect in improving adhesion and enhancing surfaces for secondary processes.

    PlasmaDyne Pro produces plasma from a high voltage electric current within a treating head. The plasma is then applied to a substrate by means of pressurized air. Power/treatment levels can be adjusted for each application. The treating heads produce a discharge area of 10 – 40mm in width depending on the type of treating head chosen for the application.

    3DT’s Updated Plasma System: Smart Technology, Adjustable Power Levels

    PlasmaDyne Pro can be customized with one or more stationary and rotating heads. At this point, 3DT has supplied system configurations with up to 12 treating heads. Importantly, each treating head is independently programmed for mode of operation and power level. This feature allows greater flexibility in applications with limited downtime between setups.

    PlasmaDyne Pro can operate as a stand-alone unit or incorporated into a production line, such as an indexing table, conveyor system or the heads can be secured onto a robotic arm.

    What Customers Say

    The first customers to receive the new PlasmaDyne Pro are very excited and happy about the system’s performance. In fact, one customer said purchasing a PlasmaDyne Pro was one of the best investments he’s made. This company is sending 3DT information about an application for another PlasmaDyne Pro.

    Customers have come to appreciate 3DT’s classic PlasmaDyne for its dependability and durability. In fact, there are numerous systems in the field with more than 25,000 hours of operation and they are still running strong. PlasmaDyne is a proven system designed for powerful adhesion. Considering the improvements made to this system, 3DT anticipates customers to experience the same long-lasting, consistent performance with the new PlasmaDyne Pro.

    All 3DT’s systems, including PlasmaDyne Pro, are produced in Germantown, Wisconsin, USA, offering the advantages of stateside sales, service and replacement parts.

    Technical Data

    3DT’s PlasmaDyne Pro system includes:

    • Single cabinet generator and transformer
    • Electrical enclosures meet IP43 standards
    • Adjustable power level up to 600W
    • Customizable with 1 – 12 stationary and/or rotating treating heads
    • Treatment area from 10 – 40mm
    • 2, 3 or 4 meter treating head cable
    • Internal air supply- eliminating the need for costly compressed air and extending nozzle life
    • Downloadable USB operation log to review performance
    • Local or remote PLC control modes
    • Color touch display monitors all system parameters
    • Intelligent fault monitoring system
    • Safe: chemical and ozone-free
    • Built to US NFPA machine safety standards

    For more information and to discuss your application please contact us at or call 262-253-6700. Learn more about 3DT and our full line of surface treatment systems at